

Crisis in Power Engineering Education: A National Security Concern Minneapolis, MN October 21-22, 2022

Combining personal passion with careers in Power engineering

Dr. Anushree Ramanath Staff Modeling Engineer, Electrical Systems Form Energy

INTRODUCTION

Jun 2020 – Feb 2022

Senior Systems Engineer, Storage Engineering, Enphase Energy Inc.

• Microinverters and storage systems, third party component integration

Jan 2019 - May 2019

Graduate Teaching Assistant, University of Minnesota

Climate Crisis: Implementing Solutions

May 2017 – Aug 2017

Research Aide - Energy Systems, Argonne National Laboratory (Data Science Intern, Corporate R&T, Eaton)

• Setup of EMCB on cloud for ARPA-e NODES

2011 – 2016 – Full-time roles and Internships in India

CodeFrontier Software Pvt. Ltd., Exeter Software India Pvt. Ltd., Bosch, Prok Devices, ERI, BHEL

EDUCATION

2020 MS and Ph.D. in Electrical and Computer Engineering, University of Minnesota Twin Cities, USA 2013 BE in EEE, BNMIT (was affiliated to Visvesvaraya Technological University, India)

Feb 2022 – Present

Staff Modeling Engineer, Electrical Systems, Form Energy

• Techno-economic analysis and electrical performance modeling

May 2019 - Aug 2019

Jun 2018 – Dec 2018

Systems

Power Electronics and Firmware R&T Intern, Corporate R&T, Electrification Technologies • High power traction inverter

Aug 2016 - May 2020

Graduate Research Assistant, University of Minnesota **Twin Cities**

Systems Control Engineer – Co-op, Integrated Energy

• Power electronics for renewable energy integration and sustainable environments

ANUSHREE RAMANATH

• Implementation of Microgrid HIL simulator

THE CHALLENGE

The electrical grid needs to fundamentally transform to meet the challenges posed by climate change Ť

Intermittency of renewable assets create periods of undersupply

Carbon mandates require retirements and risk stranding fossil assets

Extreme weather events become more frequent and disruptive to customers

Increased transmission congestion and long interconnection queues

INFLUENTIAL STUDIES AND EARLY PROCUREMENTS SIGNAL THE NEED/DESIRE FOR LONG-DURATION STORAGE SOLUTIONS

gtm: Solar Grid Edge Storage Wind Trending Podcasts White Papers Webinars

Q

ENERGY STORAGE

California Could Need 55GW of Long-Duration Storage to Meet Its 2045 Carbon-Free Grid Goal

A new study calculates a drastically higher need for long-duration storage than state officials had recognized.

JULIAN SPECTOR DECEMBER 09, 2020

As solar comes to dominate California's electricity supply, long duration storage will become increasingly valuable, a new study contends.

C3.ai transforms Utilities.	
Learn how	
宫 _{C3.ai}	

gtm: Solar Grid Edge Storage Wind Trending Podcasts White Papers Webinars Q

ENERGY STORAGE

The First Major Long-Duration Storage Procurement Has Arrived

California's community-choice aggregators are moving ahead of the traditional utilities.

Pumped hydro will compete with newfangled technologies to supply 500 megawatts to California communities.

 (\mathbf{X})

THE SOLUTION – MODULAR SCALABLE MULTI-DAY STORAGE

GWs of multi-day storage projects deployed by 2030 will enable a lower carbon, more resilient electricity grid

Improved grid reliability

Higher renewables penetration

Accelerated fossil retirements

Lower cost emissions reductions

Less congestion and curtailment

SYSTEM BUILDING BLOCKS

Our rechargeable, static iron-air battery leverages globally abundant materials and off-the-shelf components

Balance of System

- Off-the-shelf water distribution, HVAC, & air handling system components
- Standard utility-grade inverter

KEY ADVANTAGES OF OUR TECHNOLOGY

LOW-Less(than S1) th the cost of lithium-ion battery technology.

FLEXIBL

No geogephic limitations: can be sited anywhere to meet utility-scale needs.

OPTIMIZAB

Pairs well with lithium-ion batteries and renewable energy resources to enable optimal system configurations.

SCALABL

Material and designs with global scale needed for zero carbon economy.

MULTI-

No ne **DAY** upplement number of modules to achieve 100+ hour duration required to make renewables reliable.

SAFE

No risk of thermal runaway. Made from non-flammable active materials. High recyclability.

MODELING FRAMEWORK

 Legend

 Controlled Model

 Uncontrolled Model

 Process

SOLAR AND STORAGE SYSTEM – WHOLE HOME BACK-UP

EXPERIENCES AS A GRADUATE STUDENT - INDUSTRY

Eaton's Energy Management Circuit Breaker connected to cloud

High-power traction inverter platform for Cummins

Microgrid hardware-in-the-loop simulator for Cummins

EXPERIENCES AS A GRADUATE STUDENT - RESEARCH

Confusion Matrix - NDVI features + MLP									
1	2990	17	14	91	1328	0	67.3%		
	3.7%	0.0%	0.0%	0.1%	1.6%	0.0%	32.7%		
2 3 \$\$	525 0.6%	17646 21.8%	42 0.1%	5511 6.8%	119 0.1%	0 0.0%	74.0% 26.0%		
	12 0.0%	150 0.2%	13805 17.0%	4336 5.4%	13 0.0%	0 0.0%	75.4% 24.6%		
4 rtput Cla	55	554	324	2658	27	0	73.5%		
	0.1%	0.7%	0.4%	3.3%	0.0%	0.0%	26.5%		
õ	115	0	0	0	268	1	69.8%		
5	0.1%	0.0%	0.0%	0.0%	0.3%	0.0%	30.2%		
6	17	0	0	0	315	30067	98.9%		
	0.0%	0.0%	0.0%	0.0%	0.4%	37.1%	1.1%		
	80.5%	96.1%	97.3%	21.1%	12.9%	100.0%	83.3%		
	19.5%	3.9%	2.7%	78.9%	87.1%	0.0%	16.7%		
	~	r	° Ti	h arnet Cla	6	0			

Wind emulator

Converter with integrated magnetics

Land cover classification of aerial images

A-MMCs for utility-scale renewable integration

User-interactive persistence-of-vision

Q & A