NSF Role in Supporting Innovation in Research and Education in Electrical Power and Energy Systems

Eyad Abed, Program Director
with Kishan Baheti, Program Director and Yuri Podpaly, AAAS Fellow

Energy, Power, Control and Networks (EPCN)
Division of Electrical, Communications and Cyber Systems (ECCS)
National Science Foundation, USA

Any opinion, finding, conclusion, or recommendation expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.
Main Message

We are committed to working with the community to discover and support innovation in electrical power and energy research and education ----

There is currently a great need for advancing such efforts
Electrical Power Networks

- Critical infrastructure for society
- Large scale spatially distributed nonlinear dynamic systems with multiple time scales
- Hierarchical control and management system involving cyber-physical components, sensors, algorithms, and economic markets
- Techno-socio-economic system with multiple stakeholders
- Regulation and policy (and economics!)
Major Trends and Drivers

- Aging infrastructure in developed world and new infrastructure in the developing world
- IHS Global Insight estimates $12 trillion to be spent on electric grid between 2014-2020
- The rise of distributed generation (DG) and microgrids
- Integration of renewable electric energy from wind and solar, including independent “prosumers”
- Changing demand profiles
- Increasing natural gas generation
- Need for greater resilience in the face of natural and man-made disasters
- Cybersecurity

- All of these challenges require greater power system innovation and a new generation of power system engineers with broad and deep training.
Power System Planning and Operations w/ DG

• Power systems with DG do not behave like traditional power systems; new questions arise:
 – Stability criteria for traditional power networks do not carry over to systems with significant penetration of renewable sources.
 – Mandated feed-in tariffs (apply even if the power isn’t needed).
 – Lack of storage means that the utility may have to pay for power it doesn’t benefit from.
 – No economic policy to cover utility costs to support voltage at DG sources (newer DG sources add to the financial stress; should they pay more than earlier deployed DG?).
 – How to price high variability power sources (solar, wind)?
 – Demand response design (“demand dispatch”).
ENG and SBIR/STTR Research Budgets ($M)
Engineering Research Centers (Energy Related)

- Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM)
- Center for Ultra-Wide Resilient Electric Energy Transmission Networks (CURENT) – joint with DoE
- Quantum Energy and Sustainable Solar Technologies (QUEST) - joint with DoE
- Smart Lighting
- New ERC Competition underway
Industry-University Cooperative Research Centers

- Power Systems Engineering Research Center (PSERC)
- Energy-Smart Electronic Systems (ES2)
- Energy Harvesting Materials and Systems (CEHMS)
- Grid-Connected Advanced Power Electronic Systems (GRAPES)
- Advanced Vehicle and Extreme Environment Electronics (CAVE3)
- Novel High-V/T Materials and Structures (HVT)
- Next Generation Photovoltaic
- Silicon Solar Consortium
- Wind Energy Science, Technology and Research (WindSTAR)
EPCN Program Description

- Control Theory and Hybrid Dynamical Systems
- Networked Multi-agent Systems
- Cyber Physical Systems Modeling and Control
- Control/Optimization in Buildings, Transportation, and Robotics
- Adaptive and Intelligent Systems; Neural Networks
- Energy Harvesting, Storage Devices and Systems
- Solar and Wind Energy and Integration of Renewables with Grid
- Monitoring, Protection and Cyber Security of Power Grid
- Advanced Power Electronics and Electric Machines
- Electric and Hybrid Vehicles; Integration with Grid
- Policy, Economics, Consumer Behavior and the Power Grid
- Quantum, Molecular and High Performance Modeling and Simulation for Devices and Systems (QMHP)
Example of Possible Educational Innovation: Open access testbeds

- Massively open online courses (MOOCs) are gaining huge popularity
- Robotics course has ~40,000 students at start
- Desire to open robotics space to the students in the course
- Can we expand upon this idea of a Robotarium?
Need: Research and education access to remote laboratory experience

- “Bare bones” multi-robot laboratory ~ $250k
- Price is a major stumbling block for many universities and groups
- Research and education are performed in isolation
- Resource competition is the norm
Approach: Distributed laboratory space with open access

- Develop and use open-access, online, shared engineering laboratory spaces
- Potential laboratories: robotics, power systems, smart buildings, medical systems, etc.
- Shared cost and leveraging expertise

Benefits: Improving research through better access to resources

- Lessen the cost barrier to engineering experimental research
- Accelerate innovation by getting more talented people engaged
- Harness the power of the network by people working together to reach beyond the traditional, isolationist research model
Benefits: Potential new avenues and research thrusts

- Visualization and Augmented Reality
- Trade-offs of cyber security and networking
- Cyber physical systems – interaction of virtual and physical systems
- Formal model checking of software
- Real-time verification of safety systems
- Best practices and trade-offs for distance learning
Benefits: Improving education through better access to resources

- Significantly lower cost for access to expensive hardware
- Make use of exciting developments in robotics, drones, CPS systems, etc.
- Advance the participation of non-traditional and under-privileged students

CPS Security Testbed Federation (ISU, USC, MITRE)
Attack-Defense Demo @ Smart America Challenge Expo

Image: M. Govindarasu, Smart America challenge
Competition: Open-access test beds have been done previously

- ORBIT – wireless research
- DETER – cyber security test bed
- Northern Illinois University – Internet Accessible Remote Laboratory

Images: http://www.orbit-lab.org/, http://www.niu.edu/remotelab/
Summary

- There are many fundamental issues needing study, especially with the increasing penetration of wind and solar sources.
- This is an exciting field for research and innovation, with many interesting open problems.
- We need to find innovative ways to excite a new generation of power engineers with a broad interdisciplinary education.
- NSF wants to work with the community to advance this area and develop the needed workforce.