ARPA-E Overview

Electric Energy Systems Curriculum for Sustainability Workshop

Pramod Khargonekar
Deputy Director for Technology
ARPA-E
ARPA-E Mission

Catalyze the development of transformational, high-impact energy technologies

Promoting revolutionary advances in fundamental sciences

Reduce Energy-Related Emissions

Reduce Energy Imports

Improve Energy Efficiency

Translating scientific discoveries into technological innovations

Ensure the U.S. maintains a lead in the development and deployment of advanced technologies

Accelerating transformational technological advances in areas that industry by itself is not likely to undertake
Evolution of ARPA-E

- **2007**: RISING ABOVE THE GATHERING STORM PUBLISHED
- **2007**: AMERICA COMPETES ACT SIGNED
- **2009**: AMERICAN RECOVERY & REINVESTMENT ACT $400M Appropriated
- **2011**: FY2011 BUDGET $180M Appropriated
- **2012**: FY2012 BUDGET $275M Appropriated

<table>
<thead>
<tr>
<th>2009 – Present</th>
<th>Programs</th>
<th>Projects</th>
<th>Dollars (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Open + 14</td>
<td>285</td>
<td>$770</td>
</tr>
</tbody>
</table>
Technology Acceleration Model

PROGRAM DEVELOPMENT CYCLE

ENVISION
- Program Conception (Idea/Vision)
 - Workshop
- Program Approval

ENGAGE
- FOA Development & Issuance

EVALUATE
- Merit Review of Proposals
- Proposal Rebuttal

ESTABLISH
- Project Selection
- Contract Negotiations & Awards

EXECUTE
- Ongoing Technical Review
- Project Handoff

Transition Toward Market Adoption
Focused Programs

TRANSPORTATION ENERGY TECHNOLOGIES

- BEEST
- Electrofuels
- PETRO
- MOVE

HEATS

REACT

AMPED

SBIR/STTR

STATIONARY ENERGY TECHNOLOGIES

- BEET-IT
- IMPACCT
- GRIDS
- Solar ADEPT
- GENI
- ADEPT
OPEN 2012: 66 Projects, 24 States, 11 Areas

- 2 Advanced Vehicles
- 2 Water
- 13 Advanced Fuels
- 3 Building Efficiency
- 2 Stationary Generation
- 9 Grid Modernization
- 10 Renewable Power
- 8 Stationary Energy Storage
- 4 Carbon Capture
- 5 Thermal Energy Storage
- 7 Transportation Storage
OPEN 2012: 66 Projects, 24 States, 11 Areas

2 Advanced Vehicles
2 Water
13 Advanced Fuels
3 Building Efficiency
2 Stationary Generation
9 Grid Modernization
10 Renewable Power
8 Stationary Energy Storage
4 Carbon Capture
5 Thermal Energy Storage
7 Transportation Storage
Mission
Modernize the way electricity is transmitted in the U.S. through advances in hardware and software that provide greater control over power flows.

Goals
- Enable 40% intermittent non-dispatchable generation penetration
- Facilitate implementation of “real-time” electricity markets
- >10x reduction in power flow control hardware (target < $0.04/W)
- >4x reduction in HVDC terminal/line cost relative to state-of-the-art

Highlights
- AutoGrid
 - Utilizing cloud computing and advances in forecasting and optimization to enable fast highly dispatchable and distributed demand response
- Varentec
 - Developing compact, low-cost transmission power flow controllers with fractional power rating (substantial cost reductions over state of the art).
 - Enabling greater use of grid assets.

Program Director	Projects	Total Investment
Tim Heidel | 15 | $39.4 Million

Image of power lines with blue background.
ADEPT
EFFICIENT POWER CONVERSION

Mission
Paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

Goals
- Improve the energy efficiency of electronic devices and power systems
- Contribute to the development of a smart grid

Program Director: Tim Heidel
Projects: 14
Total Investment: $34.5 million

Highlights
- Virginia Polytechnic Institute (VPI)
 - Exceeded 1,000 W/in3 for GaN power conversion modules utilizing new inductors.
 - Partnering with Enpirion to develop a manufacturable converter
- Cree
 - Partnering with ABB, Powerex, & NCSU to develop high-voltage SiC insulated transistors that can replace current distribution transformers (8000lb) with a 100lbs and 98% efficient transformer
 - Demonstrated 15kV blocking voltage for SiC IGBT device.
GRIDS

Grid-Scale Renewable Energy Storage

Mission

Develop technologies that can store renewable energy for use at any location on the grid at an aggressive investment cost less than $100 per kilowatt hour, creating a stronger and more robust electric grid.

Goals

- Balance intermittent renewable sources connected to the grid
- Efficiently store and send electricity anywhere in the U.S. at a lowest possible cost
- Strong, efficient, stable and robust electric grid

Highlights

- ABB/SuperPower/Brookhaven NL
 - $4.2M follow-on funding from US Army Research Laboratory for SMES development and testing in DOD microgrids
- Bosch/Lawrence Berkeley NL
 - Attained highest power density ever in hydrogen-bromine flow battery system
- Raytheon partnering with Primus Power
 - Development of energy storage system for a microgrid at Marine Corps Air Station Miramar

<table>
<thead>
<tr>
<th>Program Director</th>
<th>Projects</th>
<th>Total Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Johnson</td>
<td>12</td>
<td>$27.7 Million</td>
</tr>
</tbody>
</table>

Program Director

Mark Johnson

Projects

12

Total Investment

$27.7 Million
Thoughts on Curricular Reform

- Power systems education should create engineers who can facilitate integration of renewables and various smart grid technologies
- Distributed energy resources – generation, storage, demand response – and distributed operations and control will challenge the traditional views of power systems
- Innovations in power electronics, communications, networking, control, computation as applied to the electric grid will be critical – a Cyber-Physical System
- Power systems education will need to be integrated with education in related fields
- And all this will need to be done with limits on credit hours, teaching resources, and financial resources