Power System Dynamics and Voltage Stability

U. D. Annakkage, University of Manitoba
Presentation prepared for the NSF Workshop
February, 2013
Lectures (20 minute video clip for each 50 minutes lecture)

Power System Dynamics:

- L2: Small signal model, and PSS Design for OMIB.
- L3: Multi-machine power system model.
- L4: State space analysis and design of PSS for multi-machine systems.

Voltage Stability:

- L1: Introduction to voltage stability.
- L2: Power flow calculation near the nose point.
- L3: Voltage stability indices.
- L4: Influence of dynamic loads on voltage stability.
The course material for the two modules are taken from two of my graduate courses at the University of Manitoba:

1. Power System Analysis (ECE 7070)
2. Power System Control (ECE 7890)
Self Assessment Questions: 4-5 questions and answers per lesson

Self Assessment Questions help students test their understanding before moving on to the next section.

Example 1
What is the advantage of dq transformation?

Example 2
What does the nose point of P-V curve tell you?
Homework Problems on Power System Dynamics (two problems for each lecture)

Power System Dynamics:
- L1: Calculation of Initial Conditions.
- L1: Per unit calculation.
- L2: Sensitivity study.
- L2: Design of a PSS.
- L3: Develop device matrices for a synchronous machine.
- L3: Exercise on developing a state space model when the device matrices are given.
- L4: A case study on understanding power oscillations.
- L4: Sequential design of PSS.
Homework Problems on Voltage Stability (two problems for each lecture)

Voltage Stability:

- L1: Generate PV curves for a radial power system
- L1: Create a case to demonstrate voltage instability under an n-1 contingency
- L2: Generate PV curves for a meshed network
- L2: Computation of voltage sensitivities.
- L4: A case study on identifying a suitable location for reactive power compensation.
- L4: Multiple choice questions on voltage stability
Resources

- Matlab .m files necessary for the homework problems
- Example cases in different formats
 - PSSE
 - DSA Power Tools
 - PSCAD
 - RSCAD
- Worked solutions to selected homework problems
- Computer program to help students write their own models (under development)